Máquinas de Turing

Técnicas de Programação

- Calcular de maneira similar a um computador
 - Tão poderoso quanto um computador convencional

- Cálculos sobre outras máquinas de Turing
 - Programa que examina outros programas
 - Permite provar existência de problemas indecidíveis

Generalizações

- Armazenamento do estado
- Várias trilhas
- Sub-rotinas

 Não adicionam qualquer poder adicional de reconhecimento de linguagens

Armazenamento no Estado

- Usar o controle finito p/ conter uma quantidade finita de dados
 - Não apenas um estado de controle q, mas 3 elementos de dados A,
 B e C

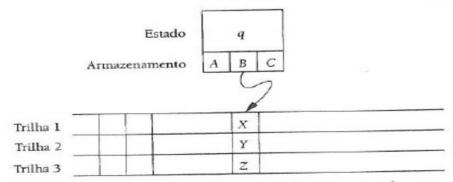


Figura 8.13: Máquina de Turing vista como tendo um armazenamento de controle finito e várias trilhas

Armazenamento no Estado

- $M = (Q,\{0,1\},\{0,1,B\},\delta,[q0,B],[q1,B])$
 - Memoriza em seu controle finito o primeiro símbolo que vê
 - Aceita a linguagem: 01* + 10*
 - Conjunto de estados: $Q = \{q0,q1\} \times \{0,1,B\}$
 - Função transição:

$$\begin{split} \delta([q0,B],0) &= ([q1,0],0,R) \\ \delta([q1,0],1) &= ([q1,0],1,R) \\ \delta([q1,0],B) &= ([q1,B],B,R) \\ \end{split} \qquad \delta([q0,B],1) &= ([q1,1],1,R) \\ \delta([q1,1],0) &= ([q1,1],0,R) \\ \delta([q1,1],B) &= ([q1,B],B,R) \\ \end{split}$$

Várias Trilhas

- Imaginar a fita como várias trilhas
 - Cada trilha possui um símbolo
 - Modo de visualizar os símbolos como uma estrutura útil
 - Ex. a célula varrida contem o símbolo [X,Y,Z]

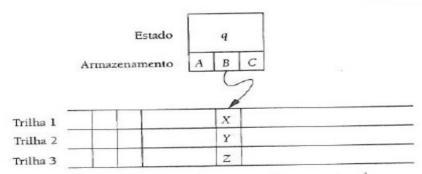


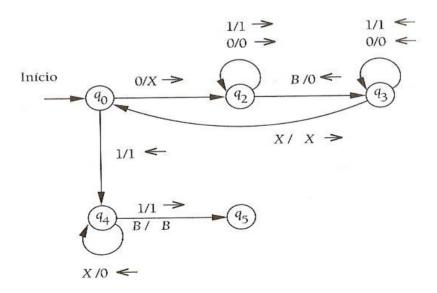
Figura 8.13: Máquina de Turing vista como tendo um armazenamento de controle finito e várias trilhas

- Um conjunto de estados
 - Executam algum processo útil
 - Inclui um estado inicial
 - Um estado de retorno
 - Passa o controle de volta ao conjunto de estados que chamou a sub-rotina

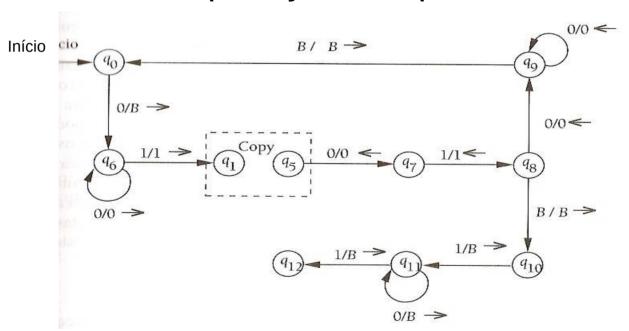
- Exemplo: Máquina que faz "multiplicação"
 - Começa com 0^m10ⁿ1 e termina com 0^{mn}
 - Em geral a fita estará com: 0ⁱ10ⁿ10^{kn}
 - Etapa básica:
 - Trocamos um 0 no primeiro grupo por B
 - Adicionamos n 0's ao último grupo
 - Resultado: 0⁽ⁱ⁻¹⁾10ⁿ10^{(k+1)n}

- Quando acabarem os 0's do primeiro grupo, teremos nm 0's no segundo grupo
- Etapa final: trocar os 10ⁿ1 valores iniciais por branco

- Sub-rotina Copy
 - Implementa a segunda etapa anterior



• Programa de multiplicação completo:



Exercício

Escreva uma MT que faça subtração. Por exemplo:

- 11110111 \rightarrow 1
- 1111101 \rightarrow 1111

Obs: assumindo que o primeiro número é sempre maior que o segundo